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Abstract

Most existing methods of 3D clothed human reconstruc-
tion from a single image treat the clothed human as a sin-
gle object without distinguishing between cloth and human
body. In this regard, we present DeClotH, which separately
reconstructs 3D cloth and human body from a single im-
age. This task remains largely unexplored due to the ex-
treme occlusion between cloth and the human body, mak-
ing it challenging to infer accurate geometries and textures.
Moreover, while recent 3D human reconstruction methods
have achieved impressive results using text-to-image dif-
fusion models, directly applying such an approach to this
problem often leads to incorrect guidance, particularly in
reconstructing 3D cloth. To address these challenges, we
propose two core designs in our framework. First, to alle-
viate the occlusion issue, we leverage 3D template models
of cloth and human body as regularizations, which provide
strong geometric priors to prevent erroneous reconstruction
by the occlusion. Second, we introduce a cloth diffusion
model specifically designed to provide contextual informa-
tion about cloth appearance, thereby enhancing the recon-
struction of 3D cloth. Qualitative and quantitative experi-
ments demonstrate that our proposed approach is highly ef-
fective in reconstructing both 3D cloth and the human body.

1. Introduction
Reconstructing 3D cloth and human body from a single im-
age is an essential task for various applications including
virtual try-on and AR/VR. In recent years, numerous 3D
clothed human reconstruction methods [1, 17, 20, 59] have
emerged with the advent of diffusion models [18]. Although
these methods achieve impressive reconstruction quality,
they are inherently designed not to decompose the 3D cloth
and human body, limiting their downstream applications.
In this regard, we tackle the more challenging task of sepa-
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Figure 1. Overview of DeClotH. Given a single image, our frame-
work reconstructs 3D cloth and human body based on the 3D cloth
and body templates.

rately reconstructing the 3D cloth and human body directly
from a single image, as illustrated in Fig. 1.

Despite the potential applications of decomposable 3D
cloth and human body reconstruction, it has not been ex-
tensively explored. One major problem is severe occlusion
between the cloth and human body, with cloth covering sub-
stantial portions of the human body surface. Such an oc-
clusion makes it difficult to infer the overall geometry and
texture of the invisible parts between 3D cloth and human
body. Additionally, image evidence (e.g., cloth silhouette)
of the input image is often imperfect due to occlusion, lead-
ing to reconstruction that can overfit to the imperfect evi-
dence. For these reasons, the reconstruction of decompos-
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Figure 2. Comparison between an existing diffusion model and
ClothDiffusion. Unlike the representative diffusion model, Sta-
bleDiffusion [47], our ClothDiffusion generates cloth-specific im-
ages and can be controlled by cloth and human body templates.

able 3D cloth and human body is considerably more chal-
lenging than the previous tasks, which do not account for
the occlusion between cloth and human body.

Recently, score distillation sampling (SDS) [45] loss
function has gained popularity in the 3D clothed human re-
construction literature [1, 17, 20, 59] for inferring the ge-
ometry and texture of the occluded human parts. The SDS
loss enhances reconstruction quality by leveraging the im-
age prior knowledge of a pre-trained text-to-image diffu-
sion model. Although employing the diffusion model is
also promising for reconstructing 3D cloth, we observe that
naively using such a strategy can provide incorrect guid-
ance about cloth appearance. As shown in Fig. 2, a rep-
resentative diffusion model, StableDiffusion [47], typically
generates images that focus on both cloth and human body,
rather than the cloth itself. Since its image prior knowledge
contains a mixture of both cloth and human body, the dif-
fusion model is unsuitable for reconstructing 3D cloth from
the human body separately. Furthermore, the generated im-
ages exhibit excessive diversity in scale, position, and cloth
deformation, making it difficult to guide reconstruction of
the actual cloth regions.

To address the above challenges, we present DeClotH
(Decomposable 3D Cloth and Human body reconstruc-
tion), a template-based optimization framework designed
for reconstructing 3D cloth and the human body from a
single image. This framework utilizes 3D template models
of cloth and human body as strong geometric priors for re-
construction to mitigate erroneous results caused by occlu-
sion. The 3D template models represent the typical shapes
of real-world clothes and human bodies by parameterizing
them into a low-dimensional latent space. For example,
SMPLicit [8] parameterizes 3D clothes with cloth style and

looseness, and SMPL [36] parameterizes 3D human bodies
with human pose and shape. Based on these template mod-
els, we design a template regularization loss function, which
constrains the reconstructed 3D cloth and human body to
be close to their 3D template models. Such constraints re-
duce heavy reliance on the imperfect image evidence caused
by occlusions in the input image, leading to more plausible
shapes for 3D cloth and human body. Consequently, lever-
aging 3D template models of cloth and the human body,
our framework produces robust reconstructions under se-
vere occlusion between the cloth and human body.

Additionally, we devise a new diffusion model, ClothD-
iffusion, which overcomes the drawbacks of the existing
diffusion model (i.e., StableDiffusion [47]) for 3D cloth
reconstruction. Unlike StableDiffusion, which generates
mixed content of cloth and human body, ClothDiffusion is
specifically trained to generate only cloth images, as shown
in Fig. 2. This attribute of ClothDiffusion is highly benefi-
cial for reconstructing 3D cloth, by providing prior image
knowledge specialized for cloth geometry and texture. Ad-
ditionally, ClothDiffusion can be controlled by incorporat-
ing 3D template models as regional information for guid-
ance. From the 3D template models, we extract a cloth sil-
houette and a human skeleton and forward them to ClothD-
iffusion. By applying this regional information, ClothD-
iffusion can provide appropriate guidance that aligns with
the actual cloth shape and human pose of the input image.
Thus, utilizing ClothDiffusion leads to the delicate geome-
try and texture of 3D cloth along with reconstructing the 3D
human body.

Our extensive experiments demonstrate that De-
ClotH produces significantly more accurate reconstruction
results than baseline methods, for both 3D cloth and human
body. Our contributions can be summarized as follows.
• We present DeClotH, which reconstructs a decomposable

3D cloth and human body from a single image, allowing
various applications.

• To address occlusion in reconstruction, we propose using
3D template models of the cloth and human body as ben-
eficial constraints during reconstruction.

• To improve the reconstruction of 3D cloth, we introduce
a cloth diffusion model that provides contextual informa-
tion specialized in cloth geometry and texture.

2. Related works
3D clothed human reconstruction. Most of the pioneering
works [2, 3, 9, 14, 15, 19, 21, 33, 41, 42, 48, 49, 52, 54, 55,
62–64] of 3D clothed human reconstruction train their net-
works based on 3D scan data, such as RenderPeople [46]
and THuman2.0 [57] datasets. PIFuHD [49] introduced a
coarse-to-fine framework to learn the high-resolution ge-
ometry of 3D clothed humans. PHORHUM [3] photo-
realistically reconstructs the 3D clothed humans while in-



ferring shading. ECON [55] proposed a method that com-
bines human normal maps with a 3D parametric human
body for fine geometric details. Recently, several works [1,
17, 20, 30] have leveraged a pre-trained text-to-image dif-
fusion model [47] to reconstruct the geometry and texture
of 3D clothed humans, utilizing the strong prior knowledge
of the diffusion model. HumanSGD [1] proposed a hu-
man mesh inpainting method with a shape-guided diffusion
model. SiTH [17] presented a two-stage pipeline that pre-
dicts a back-view image and reconstructs a 3D clothed hu-
man based on the front- and back-view images. TeCH [20]
utilized a Visual Question Answering (VQA) module to ob-
tain descriptive text prompts from the image as input to the
diffusion model. The existing methods reconstruct the 3D
clothed human as one unified mesh, which cannot be de-
composed into the 3D cloth and human body components.
On the other hand, our DeClotH enables the separation of
3D cloth and human body from the reconstructions, allow-
ing for a wide range of applications.

3D template models. 3D template models of cloth and hu-
man body are essential for recent 3D clothed human recon-
struction [4, 8, 10, 22, 38, 65] and 3D human body recon-
struction [5–7, 23, 27–29, 32, 37, 40, 58]. These reconstruc-
tion methods predict the parameters of their respective 3D
template models to reconstruct 3D clothes or human bod-
ies. BCNet [22] presented a 3D clothed human reconstruc-
tion system that predicts the PCA coefficients of 3D cloth
template models. ClothWild [38] leveraged a weakly su-
pervised learning strategy for 3D clothed humans by using
a 3D cloth template model, SMPLicit [8]. HMR [23] pro-
posed a 3D human body reconstruction framework with ad-
versarial loss to learn plausible 3D pose and shape of the 3D
human body template model, SMPL [36]. PIXIE [12] pro-
posed a 3D human reconstruction method that estimates 3D
hand pose and facial expression using SMPL-X [44]. These
template-based reconstruction methods have a critical draw-
back because they are constrained by pre-defined template
topology. Due to this limitation, they generally reconstruct
an overly smoothed mesh that does not capture the actual
wrinkles of the clothes. On the other hand, our framework
covers fine details through the template-based optimization,
integrating image evidence (e.g., cloth silhouettes) with 3D
template models in the reconstruction.

3D cloth decomposition. Encouraged by recent attention
to 3D virtual try-on, several works [24, 51, 53, 56, 66]
have proposed methods to decompose 3D clothes from a
3D human scan, multi-view images, or a video. SIZER [51]
introduced a method to segment 3D cloth meshes from a
3D human scan by voting on mesh vertices corresponding
to cloth labels. 4D-DRESS [53] leveraged graph cut opti-
mization to decompose 3D clothes from a 3D human scan.
GALA [24] proposed a method to utilize a text-to-image
diffusion model as a valuable prior to decomposition. Com-

pared to these methods, our framework tackles a much more
challenging task, reconstructing decomposed 3D cloth and
human body from a single image.

3. DeClotH
Fig. 3 illustrates the overall pipeline of our DeClotH. Given
an input image I and a target cloth type C, our framework
optimizes both the target 3D cloth mesh Mcloth and the 3D
human mesh Mbody not wearing the 3D cloth. To simplify
the description, we refer to the 3D human without the tar-
get cloth as the “human body”. In the following sections,
we first describe the 3D geometry representation (Sec. 3.1)
and image preprocessing (Sec. 3.2) for the optimization of
3D cloth and human body. Subsequently, we provide de-
tailed descriptions of three core loss functions in our frame-
work: template regularization loss (Sec. 3.3), cloth SDS
loss (Sec. 3.4), and human SDS loss (Sec. 3.5). Finally,
we explain the overall optimization process (Sec. 3.6).

3.1. 3D geometric representation (DMTet)

In our framework, Deep Marching Tetrahedra [50] (DMTet)
is utilized as the 3D geometric representation of 3D cloth
and human body. DMTet represents 3D geometry with a
deformable tetrahedral grid (XT , T ), where XT denotes
3D vertices of the tetrahedral grid and T defines the tetra-
hedral structure. Specifically, the MLP network of DMTet
predicts the signed distance value from the 3D geometry
surface for each vertex of the grid. We adopt two DMTets
to represent 3D cloth and human body in a canonical pose
(A-pose), respectively. To obtain 3D cloth mesh Mcloth and
3D human body mesh Mbody from the DMTets, we extract
meshes via the Marching Tetrahedra [11] (MT) algorithm
and transform the meshes via a linear blend skinning (LBS),
which is pre-defined in the SMPL+H [36] human model.

3.2. Image preprocessing

To optimize DMTets of 3D cloth and human body, we
gather multiple optimization targets: normal map N, sil-
houette S, and 3D template meshes (Mt

cloth and Mt
body).

Normal & silhouette estimator. The normal maps N of the
front and back views are obtained by the normal estimator
of ECON [55] from the input image. The silhouettes S of
cloth and human are acquired by running the off-the-shelf
segmentation method, SAM [26], given input image I and
text prompt (tcloth, thuman).
ClothNet. ClothNet predicts a 3D cloth template mesh
Mt

cloth of the target cloth from the input image. We use
ClothWild [38] as ClothNet, which achieves state-of-the-art
performance on in-the-wild images.
BodyNet. BodyNet predicts the 3D body template mesh
Mt

body, by estimating the 3D human pose and shape of the
SMPL + H model [36] from the input image. We modify
PIXIE [12] to infer SMPL+H and use it as BodyNet.
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Figure 3. Overall pipeline of DeClotH. Given an input image I, DeClotH optimizes 3D cloth and human body, represented by DMTets
(Sec. 3.1). For the optimization, we extract normal map N, silhouette S, and 3D template meshes (Mt

cloth and Mt
body) (Sec. 3.2). Subse-

quently, the 3D cloth and human body are optimized by three core loss functions: template regularization loss (Sec. 3.3), cloth SDS loss
(Sec. 3.4), and human SDS loss (Sec. 3.5).

3.3. Template regularization loss

The template regularization losses, Lcloth-t and Lbody-t, en-
force optimized 3D cloth and human body meshes to be
close to their 3D template meshes (Mt

cloth and Mt
body). The

loss functions are defined as

Lcloth-t = ∥Rsil(Mcloth,k)−Rsil(M
t
cloth,k)∥2, (1)

Lbody-t = ∥Rsil(Mbody,k)−Rsil(M
t
body,k)∥2, (2)

where Rsil is a silhouette renderer, and k is a camera pa-
rameter for the rendering. These losses constrain the pro-
jected 3D meshes to be close to the projection of their
3D template meshes. ClothNet and BodyNet, which pro-
duce the 3D template meshes, are trained on in-the-wild
datasets containing various images with occlusions. The
3D template meshes exhibit high robustness against occlu-
sions, leveraging learned data-driven knowledge from the
in-the-wild datasets. Consequently, the template regulariza-
tion loss prevents the erroneous reconstruction of 3D cloth
and human body from occlusion.

3.4. Cloth SDS loss

Cloth SDS loss Lcloth-SDS supervises the geometry and tex-
ture of 3D cloth, particularly for regions that are not visi-
ble in the front view. Our cloth SDS loss follows the basic
formulation of SDS loss proposed by DreamFusion [45].
Given a 3D mesh parameterized with ϕ, the SDS loss up-
dates ϕ based on the rendered image x of the 3D mesh, im-
age condition c, and text prompt P for the diffusion model.
The gradient of the SDS loss is calculated as

∇ϕLSDS(x, c, P ) = E[wt(ϵ̂(xt; c, P, t)− ϵ)
∂xt

∂ϕ
], (3)

where t denotes a noise level, xt is a rendered image with
noise, and wt is a weighting variable dependent on the noise
level t. This loss function computes the distance between
the predicted noise ϵ̂(·) and the sampled noise ϵ from the
diffusion model. Accordingly, the SDS loss guides the 3D
mesh rendering to follow a visually coherent appearance
that aligns with the image condition and text prompt.

Unlike the basic SDS loss, the cloth SDS loss function
exploits a new diffusion model, ClothDiffusion, instead of
StableDiffusion [47]. ClothDiffusion is trained to gener-
ate cloth-specific images using cloth silhouettes and human
skeletons as conditioning inputs. Cloth SDS loss supervises
the rendered normal maps and RGB images as follows:

Lnorm
cloth-SDS = LSDS(N

k
cloth,S

k
cloth+skel, Pcloth), (4)

Lrgb
cloth-SDS = LSDS(I

k
cloth,S

k
cloth+skel, Pcloth), (5)

where Nk
cloth and Ikcloth are the normal map and the RGB im-

age rendered from the 3D cloth mesh Mcloth with a camera
parameter k. The Sk

cloth+body is a combination of two sil-
houettes of 3D cloth template mesh Mt

cloth and 3D human
skeleton extracted from the 3D body template mesh Mt

body.
The cloth SDS loss provides rich contextual information on
cloth appearances using cloth-specific prior knowledge of
ClothDiffusion. Additionally, cloth SDS loss can accurately
guide the reconstruction of cloth regions by utilizing cloth
silhouettes and human skeletons as regional information.

3.5. Human SDS loss

Human loss of SDS Lhuman-SDS supervises the geometry and
texture of the occluded parts of both the 3D cloth and the
human body. This loss is based on HumanDiffusion, an-



other diffusion model that generates human images condi-
tioned on human skeletons. We adopt pre-trained weights
of ControlNet [60] for the HumanDiffusion. Human SDS
loss function supervises the rendered normal map and RGB
image as follows:

Lnorm
human-SDS = LSDS(N

k
body,S

k
skel, Pbody)

+LSDS(N
k
cloth+body,S

k
skel, Pcloth+body),

(6)

Lrgb
human-SDS = LSDS(I

k
body,S

k
skel, Pbody)

+LSDS(N
k
cloth+body,S

k
skel, Pcloth+body),

(7)

where Nk
body and Ikbody are the normal map and the RGB im-

age rendered from the 3D human body mesh Mbody. Fur-
ther, Nk

cloth+body and Ikcloth+body are rendered from composi-
tion of the 3D cloth and human body meshes (Mcloth and
Mbody). Sk

skel is the rendered image from 3D human skele-
ton extracted from the 3D body template mesh Mt

body. By
incorporating human skeletons, the human SDS loss pro-
vides accurate guidance for human regions.

3.6. Optimization procedure

Based on the above loss functions, we optimize the 3D cloth
mesh Mcloth and the 3D human body mesh Mbody through
two stages: geometry stage and texture stage.
Geometry stage. In the geometry stage, we optimize the
DMTets of 3D cloth and human body by minimizing loss
function Lgeo, defined as follows:

Lgeo = Lcloth-t + Lbody-t + Lnorm
cloth-SDS + Lnorm

human-SDS + Lgeo
recon.

(8)

Lgeo
recon is defined as

Lgeo
recon = Lnormal + Lsil + Lpen. (9)

Lnormal is the L2 distance between rendered normal maps
and their optimization targets N in the front and back view.
Lsil is the L2 distance between the rendered silhouettes and
their optimization targets S in the front and back view.
Lnormal and Lsil are calculated for both the cloth and the hu-
man body. Lpen penalizes intersection between the 3D cloth
and human body meshes.
Texture stage. In the texture stage, we optimize the tex-
ture of the meshes (Mcloth and Mbody) obtained from the
geometry stage. To this end, we construct MLP networks
(Ψcloth and Ψhuman) that predict RGB color given the vertex
coordinate of the mesh. These MLP networks are trained
by minimizing the loss function Ltex, defined as:

Ltex = Lrgb
cloth-SDS + Lrgb

human-SDS + Ltex
recon. (10)

Ltex
recon is a combination of L2 and LPIPS [61] distances be-

tween rendered RGB images and their optimization target
(i.e., I) in the front and back view. Ltex

recon is calculated for
both cloth and human body.
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Figure 4. Training process of ClothDiffusion. We train the
ClothDiffusion based on our collected cloth-specific training data.
The ClothDiffusion follows ControlNet architecture with the pre-
trained StableDiffusion.

4. ClothDiffusion

Fig. 4 shows the training process of ClothDiffusion, which
is used in the cloth SDS loss.

4.1. Training data collection

To train ClothDiffusion, we collect three data types: 1) cloth
images, 2) conditional images for generation, and 3) text
prompts. The cloth images are obtained by running the sil-
houette estimator [26] from images of the training datasets.
The conditional images are acquired by projecting a 3D
cloth template mesh and a human skeleton extracted from
a 3D body mesh. The 3D cloth and human templates are
derived from an image using ClothNet and BodyNet un-
less 3D ground-truths (GTs) are available in the training
datasets. The text prompts are acquired from BLIP [31], a
state-of-the-art image captioning method. The acquired text
prompt provides detailed descriptions of cloth color, shape,
and style in the cloth image.

4.2. Learning cloth generation

ClothDiffusion consists of two networks: StableDiffu-
sion [47] and ControlNet [60]. StableDiffusion estimates
noise, given a latent embedding of a cloth image with sam-
pled noise. ControlNet takes a conditional image (i.e.,
cloth silhouette and human skeleton) and gives additional
information for StableDiffusion to generate a plausible im-
age based on the conditional image. Using the pre-trained
weights of StableDiffusion, we train ControlNet and par-
tial layers of StableDiffusion while keeping its other lay-
ers frozen, following the fine-tuning strategy of ControlNet.
This fine-tuning strategy allows ClothDiffusion to generate
realistic cloth images by leveraging the strong prior knowl-
edge embedded in the pre-trained StableDiffusion.



5. Experiments
5.1. Datasets

4D-DRESS. 4D-DRESS [53] contains high-quality 3D
scans of 64 clothing sequences, with diverse human poses.
This dataset is used solely for evaluation purposes. For
each clothing sequence in 4D-DRESS, we randomly sam-
ple one human pose and render the corresponding 3D scan
from pre-defined camera viewpoints to obtain the test im-
ages. The evaluation set includes 64 test images, and 124
clothes appear in the test images.
THuman2.0. THuman2.0 [57] contains 3D scans of 525
clothed humans. From all scans, we uniformly sample 52
scans for evaluation. As THuman2.0 does not contain GTs
of 3D cloth, we generate 3D cloth pseudo-GTs by running
GALA [24] on the 3D human scans. We obtain test images
by rendering the 3D scans with pre-defined camera view-
points. The evaluation set includes 52 test images, and 104
clothes appear in the test images.
Training datasets of ClothDiffusion. DeepFashion [35],
SHHQ [13], MSCOCO [34], and THuman2.0 [57] are used
to train ClothDiffusion. DeepFashion [35] and SHHQ [13]
are large-scale datasets that contain diverse images of
clothed humans. We use the official training set from Deep-
Fashion and uniformly sample 10,000 images from SHHQ.
MSCOCO [34] contains a wide variety of human poses, and
we utilize its official training set. THuman2.0 [57] provides
multi-view images of clothed people, excluding duplicates
from the evaluation set.

5.2. Evaluation metrics

3D geometry reconstruction. We evaluate the geometry
of 3D reconstructions by measuring CD (chamfer distance)
and NC (normal consistency), following Huang et al. [20].
Specifically, we apply Procrustes alignment on the recon-
structed 3D meshes based on the SMPL-X meshes of 3D
GTs. With the aligned 3D meshes, we measure CD and NC
between reconstructed and GT meshes. To measure NC, we
calculate the average L2 distance between normal images of
reconstructed and GT meshes, rendered at {0◦, 90◦, 180◦,
270◦} from fixed viewpoints.
3D texture reconstruction. We evaluate the texture of
3D reconstructions, using PSNR (peak signal-to-noise ra-
tio) and LPIPS [61]. (learned perceptual image patch simi-
larity). Before evaluation, we align the reconstructions with
3D human GT poses to eliminate the influence of geometric
errors. Then, we calculate PSNR and LPIPS between RGB
images of reconstructed and GT meshes rendered at {0◦,
90◦, 180◦, 270◦} as in the NC measurement.
2D image generation of diffusion model. To verify the
feasibility of our proposed ClothDiffusion, we evaluate
the generated images from the diffusion model via CLIP-
Score [16] and Cloth-IoU. CLIP-Score [16] measures the

BCNet ClothWild + PIXIE
(ClothNet & BodyNet)

DeClotH
(Ours)

Input image

Figure 5. Effects of the optimization process of DeClotH.

4D-DRESS (cloth) 4D-DRESS (cloth+human)

Methods CD↓ NC↓ CD↓ NC↓

BCNet [22] 4.387 0.046 3.925 0.090

SMPLicit [8] 4.080 0.038 3.605 0.091

ClothWild [38] + PIXIE [12]
(ClothNet & BodyNet)

4.100 0.038 3.526 0.087

DeClotH (Ours) 3.902 0.037 3.292 0.079

Table 1. Effectiveness of the DeClotH’s optimization process
compared to 3D template meshes of ClothNet and BodyNet.

correlation between cloth text prompts and generated im-
ages. Cloth-IoU measures a proportion of the intersec-
tion between generated cloth images and GT counterparts.
Specifically, we extract cloth silhouettes from the generated
images by running SAM [26] with cloth text prompts. Then,
we calculate the IoU between the extracted silhouettes and
GT counterparts. The cloth text prompts for evaluation are
obtained by running BLIP [31] from the test images.

5.3. Ablation study

We carry out the ablation study on 4D-DRESS [53]. As 4D-
DRESS does not contain 3D human body scans excluding
clothes, we compare methods in two tracks: evaluating 3D
cloth (cloth) and evaluating the composition of 3D cloth and
the human body (cloth + human).
Effectiveness of template-based optimization. Fig. 5 and
Tab. 1 show that our optimization framework produces sig-
nificantly more realistic 3D reconstruction results, com-
pared to the 3D template meshes from ClothNet and Bo-
dyNet. ClothNet and BodyNet are model-based methods
that estimate the shape of pre-defined 3D template mod-
els of cloth and human body. Thereby, their 3D tem-
plate meshes cannot deviate from the topology of the tem-
plate models. Our framework, DeClotH builds upon these
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Figure 6. Effects of template regularization loss.

4D-DRESS (cloth) 4D-DRESS (cloth + human)

Lcloth-t Lbody-t CD↓ NC↓ PSNR↑ LPIPS↓ CD↓ NC↓ PSNR↑ LPIPS↓

✗ ✗ 8.245 0.047 28.959 0.051 3.880 0.093 22.992 0.071

✗ ✓ 8.386 0.047 29.028 0.055 3.567 0.084 23.149 0.070

✓ ✗ 4.078 0.038 30.828 0.038 3.586 0.085 23.422 0.067

✓ ✓ 3.902 0.037 31.582 0.033 3.292 0.079 23.921 0.065

Table 2. Ablation studies for template regularization loss.

3D template meshes by optimizing the 3D cloth and hu-
man body with the optimization targets (e.g., normal maps
and silhouettes), which have rich geometric information in
the input image. Through the optimization process, our
framework can reconstruct fine geometric details, such as
cloth wrinkles, while keeping the overall shape of 3D tem-
plates. Furthermore, our framework reconstructs the texture
of cloth and human body along with the geometry, resulting
in more lifelike reconstructions.
Effectiveness of template regularization loss. Fig. 6 and
Tab. 2 show that the template regularization loss signifi-
cantly drops the 3D reconstruction error, especially when
the cloth and human body are occluded. Without the tem-
plate regularization loss, the optimization of 3D cloth and
human body highly relies on the optimization targets (e.g.,
cloth silhouette) of the front views. Our proposed template
regularization loss reduces the heavy reliance, by using the
3D template models as helpful supervision for the occluded
parts. Thus, the template regularization loss alleviates the
occlusion issue and enhances the 3D reconstruction in both
the cloth and the human body.
Effectiveness of cloth & human SDS loss. Fig. 7 and
Tab. 3 show that the cloth and human SDS losses are much
more effective in reconstructing geometry and texture than
vanilla SDS loss (i.e., LSD-SDS) that uses StableDiffusion
for reconstruction guidance. As shown in Fig. 7 (c), the re-
constructed 3D jacket has an artifact near the boundary be-
tween cloth and human body, when using the vanilla SDS
loss. This artifact indicates that StableDiffusion has inad-
equate prior knowledge to separately reconstruct 3D cloth
from the human body. On the other hand, the cloth SDS
loss using ClothDiffusion effectively supervises the 3D ge-
ometry to follow the desired cloth shape.
Ablation on ClothDiffusion network. Tab. 4 shows our

(a) w/o SDS loss (b) Lcloth-SDS → LSD-SDS (c) Lhuman-SDS → LSD-SDS (d) OursInput image

Figure 7. Effects of cloth and human SDS loss.

4D-DRESS (cloth) 4D-DRESS (cloth + human)

Lcloth-SDS Lhuman-SDS CD↓ NC↓ PSNR↑ LPIPS↓ CD↓ NC↓ PSNR↑ LPIPS↓

✗ ✗ 4.704 0.041 28.151 0.047 3.635 0.086 22.895 0.083

→ LSD-SDS ✓ 4.922 0.040 30.310 0.041 3.711 0.085 23.267 0.068

✓ → LSD-SDS 3.955 0.037 31.295 0.034 3.601 0.085 23.389 0.067

✓ ✓ 3.902 0.037 31.582 0.033 3.292 0.079 23.921 0.065

Table 3. Ablation studies for cloth and human SDS loss.

4D-DRESS (cloth)

Networks CLIP-Score↑ Cloth-IoU↑

StableDiffusion [47] 0.696 0.112

HumanDiffusion [60] 0.683 0.454

ClothDiffusion (Ours) 0.713 0.548

Table 4. Ablation studies for ClothDiffusion network.

proposed ClothDiffusion is superior to other diffusion mod-
els in generating cloth images. StableDiffusion [47] and
HumanDiffusion [60] commonly produce images that con-
tain not only cloth but also other contents (e.g., human body
and background scene). Thus, StableDiffusion and Human-
Diffusion have a low CLIP-Score [16] on text prompts that
describe clothes only. On the other hand, ClothDiffusion
has a high CLIP-Score since it is specialized to generate
cloth images without including other contents. Addition-
ally, ClothDiffusion achieves the highest Cloth-IoU among
the diffusion models, since ClothDiffusion takes a cloth sil-
houette with a human skeleton as a condition, accurately
guiding the region where the cloth will be generated. Such
superiority of ClothDiffusion in generating cloth images is
beneficial in accurate guidance for reconstructing 3D cloth.

5.4. Comparison with state-of-the-art methods

We compare our method with recent 3D cloth decom-
position and 3D clothed human reconstruction methods:
GALA∗ [24], SiTH [17] + GALA [24], and TeCH [20] +
GALA [24]. GALA∗ is a modified version of the orig-
inal GALA to take a single image as input instead of a
3D scan. Specifically, GALA∗ only applies loss functions
corresponding to the front view, ignoring other view direc-
tions. SiTH + GALA and TeCH + GALA are two-stage
reconstruction methods that first reconstruct a 3D clothed
human, as one unified mesh, and decompose the 3D cloth



DeClotH (Ours)GALA* SiTH + GALAInput image TeCH + GALA

Figure 8. Qualitative comparison with 3D cloth decomposition and 3D clothed human reconstruction methods: GALA∗ [24],
SiTH [17]+GALA [24], and TeCH [20]+GALA [24], on 4D-DRESS [53] and THuman2.0 [57]. ∗ denotes the algorithm is modified to
take a single image as input instead of a 3D scan. We highlight their representative failure cases with red circles.

4D-DRESS (cloth) 4D-DRESS (cloth + human) THuman2.0 (cloth) THuman2.0 (cloth + human)

Methods CD↓ NC↓ PSNR↑ LPIPS↓ CD↓ NC↓ PSNR↑ LPIPS↓ CD↓ NC↓ PSNR↑ LPIPS↓ CD↓ NC↓ PSNR↑ LPIPS↓

GALA∗ [24] 5.790 0.049 25.363 0.068 3.451 0.102 19.490 0.117 2.211 0.059 26.553 0.050 2.132 0.118 22.183 0.079

SiTH [17] + GALA [24] 6.980 0.046 27.725 0.064 3.737 0.087 22.009 0.102 2.486 0.062 28.615 0.056 1.828 0.094 25.009 0.060

TeCH [20] + GALA [24] 5.043 0.039 29.123 0.045 3.334 0.083 23.140 0.076 2.112 0.051 29.584 0.044 1.900 0.091 25.618 0.048

DeClotH (Ours) 3.902 0.037 31.582 0.033 3.292 0.079 23.921 0.065 1.756 0.044 30.612 0.032 1.812 0.089 25.421 0.046

Table 5. Quantitative comparison with existing 3D cloth decomposition and 3D clothed human reconstruction methods.

mesh from the reconstructed 3D clothed human mesh.

Fig. 8 and Tab. 5 show the superior performance of our
DeClotH compared to the prior arts on 4D-DRESS [53]
and THuman2.0 [57]. GALA∗ [24] highly relies on the
front view, which results in undesirable appearances, es-
pecially when the cloth is occluded. On the other hand,
DeClotH produces much more robust results from occlu-
sion by using 3D template models of cloth and human body
as strong geometric priors for reconstruction. The two-
stage reconstruction methods, SiTH [17] + GALA [24] and
TeCH [20] + GALA [24], also suffer from undesirable ar-
tifacts of reconstruction results, such as torn clothes. The
reason for such artifacts is that the 3D geometric error of
the first stage, 3D clothed human reconstruction, fatally
propagates to the second stage, 3D cloth decomposition.
The 3D clothed human reconstruction contains inevitable
3D geometric errors because of the ill-posedness of recon-
struction. The error of the first stage would be a bad source
for the 3D cloth decomposition method, resulting in a fail-
ure of decomposition. Compared to the two-stage recon-
struction methods, DeClotH is a one-stage reconstruction
method that is free from the above issue. Additionally,

while the two-stage methods do not consider the geometries
of the cloth and human body during the reconstruction, De-
ClotH effectively guides the geometries by leveraging 3D
template models and ClothDiffusion. We provide further
discussion in the supplementary material.

6. Conclusion
We introduce DeClotH, a novel and powerful framework
that reconstructs decomposable 3D cloth and human body
from a single image. Based on 3D template models of cloth
and human body, our proposed template regularization loss
and cloth diffusion model effectively infer geometry and
texture in the invisible regions of 3D cloth and human body.
As a result, our framework significantly outperforms base-
line methods, qualitatively and quantitatively.

Acknowledgements. This work was supported in part
by the IITP grants [No.2021-0-01343, Artificial Intelli-
gence Graduate School Program (Seoul National Univer-
sity), No. 2021-0-02068, and No.2023-0-00156], and the
NOTIE grant (No. RS-2024-00432410) by the Korean gov-
ernment.



DeClotH: Decomposable 3D Cloth and Human Body Reconstruction
from a Single Image

Supplementary Material

In this supplementary material, we present additional
technical details and more experimental results that could
not be included in the main manuscript due to the lack of
pages. The contents are summarized below:

• S1. Controlling reconstruction results
• S2. Evaluation of pose deformation
• S3. Evaluation with POR Score
• S4. Implementation details
• S5. Discussion of two-stage reconstruction
• S6. Limitations and future works
• S7. More qualitative results

S1. Controlling reconstruction results
Our proposed DeClotH has the advantage of easily modi-
fying the reconstructed results for virtual try-on and pose
deformation. Fig. S1 illustrates the examples of control-
ling the reconstruction results. First, we can transfer the re-
constructed 3D clothes into a new 3D avatar, by fitting 3D
clothes based on the SMPL+H human model (blue part of
the figure). Second, by forwarding new SMPL+H pose pa-
rameters to the linear blend skinning (LBS) of our pipeline,
we can animate the reconstruction results (green part of the
figure). Like these examples, reconstructing separate 3D
geometries is highly useful for applying human reconstruc-
tion systems for various downstream applications.

S2. Evaluation of pose deformation
We demonstrate that our DeClotH is also superior to exist-
ing methods in applying pose deformation to reconstruction
results. For the evaluation, we deform the reconstruction
results with GT human pose parameters of 4D-DRESS [53]
test set. 4D-DRESS contains sequences of 3D cloth and hu-
man scans, driven by human pose parameters. Using these
pose parameters, we deform the reconstructed meshes to
follow the first pose of each sequence. Then, we evalu-
ate the deformed meshes based on the GT 3D scans cor-
responding to the first pose. The evaluation results are
shown in Tab. S1, indicating our DeClotH has the advan-
tage over other methods for animating reconstruction results
with novel human poses.

S3. Evaluation with POR Score
We provide more quantitative comparison results through
POR Score (pixel-wise object removal score) proposed by

Virtual try-on

Pose deformation

Input image

Reconstruction results 3D cloth transfer

Pose deformation results

Input image 3D avatar

Figure S1. Examples for controlling 3D reconstruction results.
Our reconstruction results are editable, such as virtual try-on and
pose deformation.

Kim et al. [24]. The POR Score is devised to evaluate the
quality of 3D decomposition in the absence of 3D cloth
GT scans. This metric measures the proportion of remain-
ing cloth pixels in rendered human body images, after per-
forming cloth decomposition. Specifically, given a recon-
structed 3D human body with the target cloth removed,
we render 30 images using uniformly distributed camera
viewpoints. Subsequently, we run the off-the-shelf image
segmentation method, SAM [26], to obtain the cloth seg-
mentation corresponding to the cloth prompt. Here, the
cloth prompts are acquired by running the image captioning
method, BLIP [31]. From the obtained segmentations, the
POR Score measures the ratio of pixels classified as the tar-



4D-DRESS (cloth) 4D-DRESS (cloth + human)

Methods CD↓ NC↓ PSNR↑ LPIPS↓ CD↓ NC↓ PSNR↑ LPIPS↓

GALA∗ [24] 5.251 0.044 25.390 0.069 2.844 0.088 19.454 0.117

SiTH [17] + GALA [24] 6.560 0.042 27.578 0.065 3.364 0.078 21.886 0.102

TeCH [20] + GALA [24] 4.425 0.033 29.271 0.044 2.422 0.059 23.276 0.070

DeClotH (Ours) 2.782 0.030 31.489 0.033 2.271 0.055 23.369 0.067

Table S1. Quantitative comparisons of pose deformation with
3D cloth decomposition and 3D cloth human reconstruction
methods.

Methods POR Score↓

GALA∗ [24] 0.418

SiTH [17] + GALA [24] 0.246

TeCH [20] + GALA [24] 0.225

DeClotH (Ours) 0.218

Table S2. Quantitative comparisons of POR Score [24] with
3D cloth decomposition and 3D cloth human reconstruction
methods, on 4D-DRESS [53].

get cloth in the image. A lower POR Score indicates better
performance of the 3D cloth decomposition. As shown in
Tab. S2, our framework also outperforms the other methods
in POR Score, which demonstrates that DeClotH achieves
better results in 3D cloth and human body decomposition.

S4. Implementation details

Network architecture. The DMTets, which are optimized
at the geometry stage, are implemented by using two fully-
connected layers with 32 hidden dimensions and ReLU ac-
tivations. The DMTets take the 3D vertex coordinates of the
tetrahedral grid (XT , T ) as input, where the coordinates are
normalized between -0.5 and 0.5. Then, the coordinates are
encoded by a hash positional encoding [39] with a maxi-
mum resolution of 1024 and 16 resolution levels. The MLP
networks, which are optimized at the texture stage, are im-
plemented by using a fully-connected layer with 32 hidden
dimension and ReLU activations. The MLP networks take
the mesh coordinates as input, after applying the hash posi-
tional encoding with a maximum resolution of 2048. Addi-
tionally, we implement a MLP network, which takes cam-
era parameter k and produces adaptive background colors
of the rendering pipeline, using two fully-connected layers.
Optimization details. PyTorch [43] is used for the imple-
mentation. In both the geometry and texture stages, we use
Adam optimizer [25] with 4000 optimization steps. The
initial learning rate is set to 0.001 and reduced by an ex-
ponential scheduler, η = 0.001 × 0.1step/4000. During the
optimization process, we render 3D cloth and human body
based on the spherical coordinate system, (r, θ, ϕ), where
r denotes the distance from the spherical origin, θ denotes
the elevation angle, and ϕ denotes the azimuth angle. We

3D human scan (GT) 3D cloth decomposition

Rendered images 

Cloth silhouettes

GALA

TeCH + GALA

Rendered images 

Cloth silhouettes

GALA

GALA

Input image

``TeCH

3D reconstruction 3D cloth decomposition

(b) Domain gap in rendered images

(a) Error propagation of 3D human reconstruction

GALA

TeCH + GALA

Input image

``TeCH

3D reconstruction

3D human scan (GT)

GALA

3D cloth decomposition

3D cloth decomposition

GALA

Figure S2. Failure examples of two-stage reconstruction meth-
ods: (a) propagation of 3D reconstruction error and (b) domain
gap in rendered images.

set r ∈ [0.7, 1.3], θ ∈ [−30◦, 30◦], and ϕ ∈ [−180◦, 180◦],
with uniform sampling. To capture fine details of human
faces, we additionally use zoomed-in camera views for the
rendering. Specifically, we set the spherical origin to the
3D position of SMPL+H head keypoint, r ∈ [0.3, 0.4],
θ ∈ [−90◦, 90◦], and ϕ ∈ [−90◦, 90◦]. All the experiments
are conducted with an NVIDIA Quadro RTX 8000 GPU.
Training details for ClothDiffusion. To train ClothDiffu-
sion described in Sec. 4, we adopt StableDiffusion [47] in
version 1.5. The weights of ClothDiffusion are updated by
Adam optimizer [25] with 200k training steps and a mini-
batch size of 8. The learning rate is set to 10−5. We train
the model with an NVIDIA Quadro RTX 8000 GPU.

S5. Discussion of two-stage reconstruction
In this section, we provide a deep discussion about the ad-
vantages of our DeClotH compared to the two-stage recon-
struction methods, SiTH [17] + GALA [24] and TeCH [20]
+ GALA [24]. We suggest that the two-stage reconstruction
methods have two drawbacks: 1) propagation of 3D recon-
struction error and 2) domain gap in the rendered images.



Error propagation of 3D human reconstruction. Fig. S2
(a) illustrates that the 3D geometric errors from the 3D hu-
man reconstruction significantly affect 3D cloth decompo-
sition errors. In the first row of the figure, GALA [24] ac-
curately decomposes 3D cloth when provided with a 3D
human GT scan, which is naturally free of geometric ar-
tifacts. On the other hand, in the second row of the fig-
ure, TeCH [20] produces the 3D geometric error in recon-
structing the ankle part, leading to the annihilation of ankle
parts in the 3D cloth decomposition. The primary discrep-
ancy lies in 3D human reconstruction methods overlooking
the geometric relationship between the cloth and the human
body, leading to overly thick or thin reconstructions. While
these thick or thin reconstructions appear visually accept-
able, they are critically detrimental to 3D cloth decomposi-
tion. Unlike the two-stage approach, our DeClotH considers
the volumetric space for 3D cloth decomposition during the
reconstruction process. Therefore, DeClotH is free from er-
ror propagation issue and provides accurate reconstructions
of 3D cloth and human body.
Domain gap in rendered image. Fig. S2 (b) shows that
there is a domain gap issue in rendered images between
real-world and reconstructed 3D avatars, leading to wrong
3D cloth decomposition. The 3D cloth decomposition
method, GALA [24], runs based on the cloth silhouettes
from the rendered images of a given 3D avatar. Here, the
cloth silhouettes are acquired through the image segmenta-
tion method, SAM [26]. GALA (first row of the figure) re-
sults in the accurate decomposition result by utilizing cor-
rect cloth silhouettes for all rendered images. In contrast,
TeCH+GALA (second row of the figure) produces the er-
roneous result since the cloth segmentation often fails. We
conjecture that the failure of the cloth segmentation is the
domain gap in rendered images. Based on the 3D human re-
construction results of TeCH [20], its rendered images have
artificial appearances compared to real images. Such artifi-
cial appearances adversely affect the decomposition of 3D
clothes from the 3D human reconstruction results. On the
other hand, our proposed DeClotH is a one-stage method
that does not require performing segmentation for rendered
images. Therefore, our DeClotH does not have the domain
gap issue, which is an advantage over the two-stage recon-
struction methods.

S6. Limitations and future works
Diversity of cloth shape. There is a limitation in re-
constructing diverse cloth types (e.g., dress), as shown in
Fig. S3 (a). This is mainly due to the expression power of
the cloth template model (i.e., SMPLicit [8]). Most of the
existing cloth template models [4, 8, 10, 22, 38] have diffi-
culty in modeling the wide variety of 3D cloth geometries
in the real world. Thereby, for several uncommon clothes,
predicting 3D cloth templates often fails, and DeClotH’s re-

(a) Diversity of cloth shape

(b) Inter-penetration 

Input image 3D cloth & body templates

Input image Reconstruction results

Reconstruction results

Figure S3. Failure cases of our proposed framework.

construction based on the cloth templates also produces er-
roneous results. Improving the expression power of cloth
template models should be a future research direction.
Inter-penetration. Fig. S3 (b) shows that our framework
often suffers from inter-penetration in reconstructed 3D
clothes. This inter-penetration issue is extremely challeng-
ing, as it requires reasoning not only about the geometric
relationship between the cloth and the human body, but also
among different clothes. Accordingly, we aim to extend our
framework to efficiently reconstruct 3D clothes while over-
coming the inter-penetration issue.

S7. More qualitative results
We provide more qualitative comparisons of 3D clothing
reconstruction on 4D-DRESS [53] and THuman2.0 [57].
Figs. S4 and S5 show that our DeClotH produces far more
accurate reconstructions of 3D cloth and human body com-
pared to the prior arts. Fig. S6 demonstrates that De-
ClotH also achieves superior reconstruction performance on
in-the-wild images.

Fig. S7 shows the qualitative comparison of StableDiffu-
sion [47], HumanDiffusion [60], and our proposed ClothD-
iffusion. Compared to StableDiffusion and HumanDiffu-
sion, ClothDiffusion specializes in cloth image generation,
excluding other contents. Additionally, ClothDiffusion ac-
curately generates cloth images in the desired regions cor-
responding to the condition images.
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Figure S4. Qualitative comparison with 3D cloth decomposition and 3D clothed human reconstruction methods: GALA∗ [24],
SiTH [17]+GALA [24], and TeCH [20]+GALA [24], on 4D-DRESS [53]. ∗ denotes the algorithm is modified to take a single image as
input instead of a 3D scan. We highlight their representative failure cases with red circles.
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Figure S5. Qualitative comparison with 3D cloth decomposition and 3D clothed human reconstruction methods: GALA∗ [24],
SiTH [17]+GALA [24], and TeCH [20]+GALA [24], on THuman2.0 [57]. ∗ denotes the algorithm is modified to take a single image as
input instead of a 3D scan. We highlight their representative failure cases with red circles.
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Figure S6. Qualitative comparison with 3D cloth decomposition and 3D clothed human reconstruction methods: GALA∗ [24],
SiTH [17]+GALA [24], and TeCH [20]+GALA [24], on in-the-wild images. ∗ denotes the algorithm is modified to take a single image
as input instead of a 3D scan. We highlight their representative failure cases with red circles.
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Figure S7. Qualitative comparison of cloth image generation between StableDiffusion [47], HumanDiffusion [60], and our proposed
ClothDiffusion.
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