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“A man is jumping with the skateboard 

while performing a trick”

“A woman is holding a donkey's halter 

while standing indoors”

“A man is sitting on a colorful mosaic 

bench with his legs crossed”

Figure 1. TeHOR. Given a single image, our framework jointly reconstructs textured 3D human and object by capturing their holistic and
semantic interactions using text descriptions.

Abstract

Joint reconstruction of 3D human and object from a sin-
gle image is an active research area, with pivotal applica-
tions in robotics and digital content creation. Despite recent
advances, existing approaches suffer from two fundamen-
tal limitations. First, their reconstructions rely heavily on
physical contact information, which inherently cannot cap-
ture non-contact human–object interactions, such as gazing
at or pointing toward an object. Second, the reconstruc-
tion process is primarily driven by local geometric proxim-
ity, neglecting the human and object appearances that pro-
vide global context crucial for understanding holistic inter-
actions. To address these issues, we introduce TeHOR, a
framework built upon two core designs. First, beyond con-
tact information, our framework leverages text descriptions
of human–object interactions to enforce semantic alignment
between the 3D reconstruction and its textual cues, en-
abling reasoning over a wider spectrum of interactions, in-
cluding non-contact cases. Second, we incorporate appear-
ance cues of the 3D human and object into the alignment
process to capture holistic contextual information, thereby

ensuring visually plausible reconstructions. As a result, our
framework produces accurate and semantically coherent re-
constructions, achieving state-of-the-art performance.

1. Introduction
Joint reconstruction of 3D human and object from a single
image is a cornerstone of human behavior understanding, as
it provides insight into how humans interact physically and
semantically with their surroundings, enabling broad appli-
cations in robotics, AR/VR, and digital content creation.
To achieve physically and semantically accurate reconstruc-
tion, it is essential to faithfully capture human–object inter-
action (HOI), ranging from explicit physical contacts, such
as grasping a cup, to implicit non-contact relations, such as
reaching toward a door handle or gazing at a monitor.

Most existing methods for 3D human and object recon-
struction from a single image [9, 13, 37, 50, 73, 76, 77, 81]
have primarily utilized human–object contact information
as a major cue for interaction reasoning. These approaches
first predict contact regions on the 3D human and object sur-
faces, and subsequently enforce local geometric proximity
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Figure 2. Limitations of existing reconstruction methods. Pre-
vious methods suffer from over-reliance on contact information
and neglect the global interaction context, leading to implausible
reconstructions. In contrast, TeHOR produces accurate and plau-
sible 3D reconstructions by leveraging holistic and semantic guid-
ance from text descriptions.

at the contact regions through iterative fitting. While these
methods have shown notable progress, they suffer from two
fundamental limitations. First, previous methods rely heav-
ily on contact information, which provides limited physical
cues and cannot capture non-contact interactions common
in the real world, such as gazing at or pointing toward an
object. As illustrated in Fig. 2 (a), when a person prepares
to catch a frisbee, the absence of physical contact provides
no cues for the reconstruction system to leverage, result-
ing in incorrect 3D reconstructions. Even in contact scenar-
ios, over-reliance on contact information also makes these
methods vulnerable to contact prediction errors, as shown
in Fig. 2 (b), where inaccurate contact prediction directly
leads to erroneous reconstruction results. Second, the fit-
ting processes of the existing methods are primarily driven
by local geometric proximity, ignoring global appearance
cues of the human and object. The appearance cues, such
as color and shading, provide rich contextual information
for understanding the holistic structure of human–object in-
teractions. However, the previous reconstruction systems
primarily fit the geometric proximity between human and
object without considering the holistic appearance, result-

ing in globally implausible results, such as an incorrectly
oriented bottle and a misaligned human gaze in Fig. 2 (c).

To address these limitations, we propose TeHOR (Text-
guided 3D Human and Object Reconstruction), which
leverages rich text descriptions of human-object interaction
as strong guidance for reconstruction. Given a single im-
age, our framework first extracts text descriptions that spec-
ify the human–object interaction depicted in the image, us-
ing a vision–language model (e.g., GPT-4 [1]). Based on
the text descriptions, we jointly optimize the geometry and
texture of the 3D human and object by supervising their ren-
dered 2D appearances to align them with the semantic cues
in the text. Specifically, this supervision is implemented by
utilizing a pre-trained diffusion network (e.g., StableDiffu-
sion [62]) conditioned on the text descriptions. As the diffu-
sion network encompasses strong prior knowledge of the as-
sociation between visual appearance and text descriptions,
it serves as a bridge between textual and visual domains.
During the optimization, the diffusion network computes
text-conditioned score gradients that drive the rendered ap-
pearances toward the visual distribution conditioned on the
text, progressively refining the 3D human and object to bet-
ter reflect the described interaction. This optimization is
performed across multiple viewpoints, encouraging the re-
constructed 3D human and object to exhibit consistent se-
mantics across different viewpoints.

Built upon this design, our text-guided optimization of-
fers two key advantages. First, as text descriptions con-
tain semantic cues that extend beyond human-object con-
tact, our framework enables reasoning about a wide range
of interactions, including non-contact scenarios, such as ap-
proaching to catch a frisbee. Second, by supervising the
2D appearances of the human and object with a pre-trained
diffusion network, our framework takes into account the
holistic visual plausibility of the interaction, unlike previ-
ous methods that rely primarily on local geometric proxim-
ity. As a result, we show that our framework significantly
improves the accuracy and plausibility of 3D human and
object reconstruction and achieves state-of-the-art perfor-
mance in both general and non-contact scenarios. More-
over, to the best of our knowledge, our framework is the
first to jointly reconstruct full 3D textures of the human and
the interacting object, which enables the creation of immer-
sive and realistic 3D digital assets.

Our contributions can be summarized as follows.
• We propose TeHOR, which jointly reconstructs 3D hu-

man and object by leveraging text descriptions as seman-
tic guidance, extending beyond physical contact cues.

• To capture the holistic context of human–object interac-
tion, we incorporate appearance cues from the human and
object by globally aligning their rendered appearances
with the textual descriptions.

• Extensive experiments demonstrate that our proposed



framework significantly outperforms previous reconstruc-
tion methods across diverse interaction scenarios.

2. Related works
3D human and object reconstruction. Most of the recent
works on 3D human and object reconstruction [7, 16, 37,
50, 76–78, 81, 85] primarily focus on capturing local in-
teraction priors, particularly contact, to refine the spatial
relationship between 3D human and object. PHOSA [85]
optimizes the 3D spatial arrangement of humans and ob-
jects based on pre-defined contact labels, encouraging the
contact regions on both human and object to ensure geo-
metric proximity. CONTHO [50] is a framework that pre-
dicts contact maps directly from images and leverages a
contact-based Transformer to enhance reconstruction using
the predicted contact maps. More recently, several meth-
ods have been proposed for open-vocabulary reconstruc-
tion, enabling strong scalability and generalization to object
categories unseen during training. InteractVLM [13] infers
2D contact maps in multiple views through a fine-tuned vi-
sion–language model [41] and uses the contact information
to guide reconstruction. HOI-Gaussian [74] integrates a
contact loss with an ordinal depth loss to more accurately
capture relative depth between humans and objects.

Despite these advances, existing methods still rely heav-
ily on physical cues, such as contact, causing them to strug-
gle with complex interactions that require semantic reason-
ing. InteractVLM depends on accurate contact estimation,
and failures in contact prediction directly degrade the qual-
ity of the final 3D reconstruction. While HOI-Gaussian
introduces an ordinal depth constraint to mitigate contact
failure, it remains vulnerable to complex interaction scenar-
ios, such as severe human–object occlusion, as it relies on
front-view cues without semantic reasoning. Unlike these
methods, our framework is capable of holistic semantic rea-
soning about human-object interactions beyond contact in-
formation by leveraging global contextual information from
text descriptions. Additionally, our framework goes be-
yond prior methods by reconstructing textured 3D humans
and objects that provide richer representations than the non-
textured surfaces, benefiting immersive downstream appli-
cations such as AR/VR.
Human-object interaction. With the emergence of large-
scale 3D datasets [5, 25, 74], numerous studies [8, 17, 18,
24, 33, 66, 70, 82] have focused on capturing human–object
interactions. Human–object contact has been a common cue
in this line of research due to its intuitive physical represen-
tation observable in images. BSTRO [24] is a Transformer-
based [11] framework that predicts dense body contact from
a single image. DECO [70] utilizes a cross-attention net-
work that jointly leverages human body parts and 2D scene
context for contact estimation. LEMON [82] extends con-
tact estimation approaches by modeling relations among

human contact, object affordance, and spatial configuration.
More recently, ComA [32] introduces a probabilistic affor-
dance representation that extends binary contact to incorpo-
rate relative orientation and proximity. Our framework goes
beyond this line of work by leveraging textual descriptions
that capture the semantic context of human-object interac-
tion, enabling plausible 3D reconstructions.
3D human reconstruction. Most of the 3D human recon-
struction methods are built upon parametric human mod-
els (e.g., SMPL [46] and SMPL-X [56]) to estimate human
body [3, 12, 14, 30, 36, 38, 49, 55, 72, 84] or clothed hu-
mans [2, 39, 47, 51–53, 60, 64, 67, 79, 87]. ARCH [19, 20]
reconstructs animatable clothed humans using an implicit
function that encodes occupancy, normals, and colors for
detailed geometry and appearance. TeCH [26] employs
a text-to-image diffusion model [63] to match the recon-
structed appearance of the human with the textual descrip-
tion of the input image. LHM [59] represents human texture
via 3D Gaussians in canonical space, enabling high-quality
reconstruction and pose-controlled animation. In our frame-
work, we utilize LHM for the initial 3D human reconstruc-
tion due to its strong generalization to in-the-wild scenarios.
3D object reconstruction. Recent works on 3D object re-
construction [15, 27, 42, 43, 45, 58, 68, 69, 75, 80, 86] have
increasingly focused on open-vocabulary settings to gener-
alize beyond fixed object categories. Zero-1-to-3 [43] in-
troduces a viewpoint-conditioned image generative model
that learns novel-view image synthesis, enabling zero-shot
3D reconstruction. DreamGaussian [69] optimizes a 3D
Gaussian representation [31] for efficient and high-quality
reconstruction. InstantMesh [80] is a feed-forward Trans-
former [71] that exploits a multi-view diffusion prior for
efficient textured 3D object reconstruction. In all our ex-
periments, we use the 3D object meshes produced by In-
stantMesh as the initial object reconstruction to ensure a
fair and consistent baseline, given that most previous recon-
struction methods are mesh-based pipelines.

3. TeHOR
Fig. 3 illustrates the overall pipeline of TeHOR. In the fol-
lowing sections, we first describe the 3D representation of
the human and object (Sec. 3.1). Subsequently, we provide
detailed descriptions of two stages: the reconstruction stage
(Sec. 3.2) and the HOI optimization stage (Sec. 3.3).

3.1. 3D representation
We represent the 3D human and object, each as a set of 3D
Gaussians, denoted by Φh and Φo, respectively. Following
3DGS [31], each 3D Gaussian is defined by its 3D position
centroid and a set of Gaussian attributes (e.g., scale, rota-
tion, opacity, and appearance features) that jointly encode
geometric and appearance properties. To project 3D Gaus-
sians onto the 2D image space, we adopt the differentiable
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Figure 3. Overall pipeline of TeHOR. Given an input image, our framework initially reconstructs a 3D human, a 3D object, and a 2D
background. Then, the initially reconstructed 3D human and object are jointly optimized using three core loss functions: reconstruction
loss, appearance loss, and contact loss, to ensure accurate and semantically plausible human-object interaction.

rendering formulation introduced in Mip-Splatting [83].
Human Gaussians. 3D human Gaussians Φh are parame-
terized by Gaussian attributes ϕh along with SMPL-X hu-
man body pose θ and shape β parameters. The Gaussian at-
tributes ϕh are defined in the canonical human pose, where
each Gaussian is anchored to a surface point of the rest-
posed SMPL-X [56] mesh. We then animate the Gaussians
using linear blend skinning (LBS) driven by the human pose
θ to obtain the final 3D human Gaussians. In this animation
process, we follow ExAvatar [48] to make the Gaussians of
the hands and face follow the original SMPL-X skinning
weights, while those of the other body parts adopt averaged
skinning weights from their neighboring SMPL-X vertices.
Object Gaussians. 3D object Gaussians Φo are parame-
terized by Gaussian attributes ϕo, rotation R, translation t,
and scale s, where ϕo is defined in a canonical space. The
final 3D Gaussians are obtained by applying an affine trans-
formation with rotation R, translation t, and scale s to the
canonical representation.

3.2. Reconstruction stage
In this stage, we acquire the text prompts, the initial 3D
human and object, and 2D background, which serve as nec-
essary components for the HOI optimization stage.
Text captioning. From the input image, we extract two text
prompts, Pholistic and Pcontact. Pholistic captures the global
context of the human–object interaction depicted in the im-
age, while Pcontact specifies the human body parts (e.g., head
and hands) involved in physical contact with the object.
These prompts are acquired using a vision-language model,
GPT-4 [1], which has powerful visual understanding capa-
bilities learned from large-scale multimodal datasets.

Human reconstruction. To obtain an initial 3D human re-
construction, we first remove the interacting object by using
SmartEraser [28]. From the object-removed image, we seg-
ment the human region and mask the background to obtain
a clean human image.SA Based on the human segmented
image, we derive the initial 3D Gaussian attributes ϕh with
LHM [59]. Separately, we estimate the initial human pose
θ and shape β parameters using Multi-HMR [3].
Object reconstruction. To obtain an initial 3D object re-
construction, we also isolate the object from the input image
with SmartEraser [28] and SAM [35], acquiring a clean ob-
ject image. Based on the object image, we reconstruct its
3D shape and texture as a mesh with InstantMesh [80] and
subsequently convert the mesh into 3D Gaussian attributes
ϕo using 3DGS [31]. The object pose parameters (R, t,
and s) are estimated by aligning the reconstructed 3D ob-
ject surface with the depth map predicted by ZoeDepth [4]
from the original image.
Background reconstruction. To build a 2D background,
we utilize SmartEraser [28] and remove the human and ob-
ject from the input image. The 2D background image, along
with 3D human Gaussians Φh and 3D object Gaussians Φo,
are used for constructing realistic front- and novel-view ren-
dering, which is crucial for the appearance loss in the HOI
optimization stage (Sec. 3.3).

3.3. HOI optimization stage

In this stage, we jointly refine the initial 3D human and ob-
ject reconstructions using text prompts to ensure a holis-
tic and semantically aligned reconstruction with the text.
Specifically, we optimize the 3D human Gaussians Φh and
the 3D object Gaussians Φo over N = 200 optimization



steps, driven by the following overall loss function:

L = Lrecon + Lappr + Lcontact + Lcollision, (1)

where Lcollision is a penalization term that discourages in-
terpenetration between the 3D human and object, following
Jiang et al. [29]. The remaining terms are detailed below.
Reconstruction loss. The reconstruction loss Lrecon is de-
fined as the discrepancy between the input image and the
front-view rendering composed of 3D human Gaussians,
3D object Gaussians, and 2D background. It consists of two
mean squared error (MSE) terms: (1) loss between the ren-
dered RGB image and the input image, and (2) loss between
the rendered silhouettes and the corresponding segmenta-
tion masks of the human and object in the input image.
Appearance loss. The appearance loss Lappr is defined
as the semantic distance between the holistic text prompt
Pholistic and the novel-view rendering composed of 3D hu-
man Gaussians, 3D object Gaussians, and the 2D back-
ground. Specifically, we sample a random viewpoint uni-
formly over a sphere, render the 3D human and object Gaus-
sians from that viewpoint, and composite the result onto the
2D background image. Based on the rendered image, we
apply the score distillation sampling strategy [57] by lever-
aging the rich visual prior knowledge of a pre-trained dif-
fusion network (e.g., StableDiffusion [62]) to align the ren-
dered appearance with the text prompt. The appearance loss
is computed as

∇ΦLappr = E[wt(ϵ̂t(xt;Pholistic)− ϵt)
∂xt

∂Φ
], (2)

where t denotes the noise level, xt is the rendered image
perturbed by Gaussian noise ϵt, and wt is a weighting fac-
tor determined by the noise level t. The loss function mini-
mizes the discrepancy between the predicted noise ϵ̂t(·) and
the true noise ϵt. This encourages the optimization of the
3D Gaussians, through the rendered images, to align with
the distribution of plausible human–object interaction ap-
pearances learned by the pre-trained diffusion network.

The appearance loss effectively utilizes the visual prior
knowledge from the pre-trained diffusion network to guide
the reconstruction toward plausible human-object interac-
tions, addressing the absence of interaction reasoning in
the initial 3D human and object reconstruction. It captures
holistic contextual cues beyond physical contact, enabling
reasoning about non-contact interactions and object orien-
tation related to human intent. By applying such holistic
guidance, it complements the contact information and sig-
nificantly improves the accuracy and plausibility of 3D hu-
man and object reconstruction.
Contact loss. The contact loss Lcontact is defined as the
proximity between the object surface and human body parts
predicted to be in contact. We identify the set of Gaus-
sian center points Vh,c corresponding to the contacting body

3D human Gaussians 3D object Gaussians

Figure 4. Gaussians-to-mesh conversion process.

parts specified in the SMPL-X body model, based on the
contact text prompt Pcontact (e.g., right foot). Then, we com-
pute the loss that minimizes the distance between the con-
tacting 3D human points Vh,c and their nearest 3D object
points Vo, within a threshold τ = 10 cm, calculated as:

Lcontact =
1

|Vh,c|
∑

vh∈Vh,c

d(vh, Vo) · 1[d(vh, Vo) < τ ]. (3)

This loss enforces local physical plausibility between the
estimated contacting regions, enhancing reconstruction ac-
curacy in conjunction with the appearance loss Lappr.

3.4. Gaussians-to-mesh conversion
Fig. 4 illustrates the process of converting the 3D Gaussians
of the final human and object reconstruction into 3D human
and object meshes. Naturally, the 3D Gaussians deviate
from their underlying base meshes, which are the SMPL-
X body model [56] for the human and the 3D object mesh
from InstantMesh [80]. For contact regions, direct conver-
sion from 3D Gaussians to a mesh can result in inconsis-
tencies between the contacts defined by the 3D Gaussians
and those defined by the corresponding mesh surfaces. To
ensure consistent contact, we apply a local shift that moves
the object mesh toward the human surface to resolve such
inconsistencies. To this end, we identify contact regions
where the distance between the 3D human and object Gaus-
sians is less than 5 cm. Then, we select the mesh vertices
on both the human and object surfaces that correspond to
these contact regions and minimize the distance between
these vertices to zero. We use the 3D human and object
meshes after this conversion in all experiments described
in Sec. 4, for comparison with existing mesh-based recon-
struction methods.

4. Experiments

4.1. Datasets
Open3DHOI [74] and BEHAVE [5] datasets are used for
our experiments. Open3DHOI is an open-vocabulary, in-
the-wild 3D HOI dataset that we use only for evaluation. It



contains over 2.5K images and 133 object categories. BE-
HAVE is an indoor 3D HOI dataset that captures the inter-
actions of 8 human subjects and 20 objects in a controlled
setting. We use its official test set, which consists of 4.5K
images, for the evaluation.

4.2. Evaluation metrics
For all evaluation metrics, we align the root position be-
tween the 3D human reconstruction and ground-truth (GT).
Chamfer distance (CDhuman, CDobject). We evaluate the
3D human and object reconstruction using the Chamfer dis-
tance between the predicted 3D surface and the correspond-
ing GT. The Chamfer distance is separately computed for
the human (CDhuman) and object (CDobject) in centimeters.
Contact score. We evaluate contact fidelity between re-
constructed human and object using the F1 score of contact
regions derived from their 3D surfaces. We obtain a contact
map by extracting human vertices of the SMPL-X mesh sur-
face [56] within 5 cm of the object mesh. Then, the contact
score (Contact) is computed as the harmonic mean of pre-
cision and recall, defined as 2 × PR

(P+R) , where P and R
denote precision and recall. Note that contact evaluation
is only performed on the SMPL-X mesh surface, since GT
contacts are defined on the SMPL-X topology and are in-
compatible with the topology-free Gaussian representation.
Collision. To evaluate physical plausibility, we evaluate
collision by measuring the interpenetration between the re-
constructed 3D human and object. We compute the percent-
age of human vertices located within the object mesh.

4.3. Ablation study
We carry out all ablation studies on Open3DHOI [74].
Effectiveness of text-guided optimization. Fig. 5 and
Tab. 1 demonstrate that our optimization stage effectively
refines the 3D human and object by capturing semantic in-
teractions described in text descriptions. When we remove
the text prompt condition from the appearance loss Lappr,
the reconstruction fails to capture the global context of the
human-object interaction. As shown in Fig. 6, optimization
without text conditioning fails to orient the human’s gaze to-
ward the right hand, whereas incorporating text information
corrects this implicit context, resulting in accurate 3D hu-
man and object reconstruction. This is mainly because the
text descriptions provide the holistic context about the inter-
action beyond the physical contact information. Moreover,
the texts provide the semantic prior knowledge for inferring
non-contact interactions, which cannot be derived from the
contact information. Thus, leveraging the comprehensive
textual information enables our framework to produce ac-
curate and plausible reconstructions that capture the global
interaction context.
Ablation on loss configurations. Fig. 7 and Tab. 2 demon-
strate the effectiveness of our loss design, comprising ap-

Input image Before optim. After optim.
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“A woman is standing with a backpack on her back”

“A man is bending down to catch a blue soccer ball in front of a goal”

“An elderly man is holding an umbrella in one hand while leaning on it”

Figure 5. Optimization results of TeHOR. Our text-guided opti-
mization accurately refines the 3D human and object by utilizing
their corresponding text descriptions.

pearance loss Lappr and contact loss Lcontact. The first row
of the table shows that removing the appearance loss fails
to capture holistic interaction cues, leading to implausible
reconstructions. As shown in Fig. 7, the teddy bear held
by the person is displaced from the chest and even pene-
trates the arm. With the inclusion of appearance loss, con-
textual cues from the input image are effectively captured
and reflected in the 3D reconstruction, resulting in a con-
sistent human–object interaction. To further examine the
effectiveness of our appearance loss, we replace the appear-
ance loss Lappr with CLIP loss LCLIP, which also provides
appearance-level supervision using the textual information.
Specifically, the CLIP loss function minimizes the cosine
distance between the feature embeddings of the rendered
image and the corresponding text prompt within the pre-
trained CLIP embedding space [61]. As shown in the third
and fourth rows of Tab. 2, our appearance loss achieves sig-
nificantly better object Chamfer distance (CDobject) and con-
tact F1-score. CLIP encodes text features into a single 1D
embedding vector, which limits its ability to model dense
spatial human-object relationships. In contrast, our appear-
ance loss Lappr applies dense, pixel-level gradients in ren-
dered 2D appearances, distilling rich priors from the pre-
trained diffusion network to enable accurate, fine-grained
3D reconstruction. Accordingly, our appearance loss effec-
tively optimizes the 3D human and object to follow the ap-



Input image w/o text prompts w/ text prompts

“A man is hammering a nail into a wooden plank while looking down the plank”

Figure 6. Effectiveness of text descriptions in optimization.

CDhuman↓ CDobject↓ Contact↑ Collision↓

Before optim. 5.252 31.268 0.305 0.040

After optim. w/o text prompts 5.028 20.348 0.374 0.052

After optim. (Ours) 4.941 16.701 0.412 0.047

Table 1. Effectiveness of text-guided optimization.

pearance cues under the diffusion prior, ensuring both plau-
sible and accurate 3D reconstruction.
Ablation on appearance rendering. Tab. 3 investigates
the impact of key components in our framework that en-
able realistic appearance rendering. We first evaluate the
advantage of the 3D Gaussian representation over mesh,
which is a widely used representation in 3D human and ob-
ject reconstruction [9, 13, 85]. As shown in the first row,
3D Gaussians significantly outperform mesh representation
for both the human and object, due to two main factors.
First, 3D Gaussians excel at modeling high-fidelity visual
appearances, providing richer signals that enable the ap-
pearance loss Lappr to more accurately align the reconstruc-
tion with the textual semantics. Second, their flexible and
topology-free structure allows for more effective optimiza-
tion of the 3D spatial relationships between the human and
object. We also conduct an ablation study on the use of a
2D background for realistic rendering. The second row of
Tab. 3 shows a significant degradation in performance when
the 2D background is removed. This demonstrates that the
2D background plays a crucial role in providing complete
scene context, which allows the appearance loss to fully ex-
ploit the image prior knowledge from the diffusion network,
leading to more precise optimization.

4.4. Comparison with state-of-the-art methods
We compare our framework with state-of-the-art 3D human
and object reconstruction methods. Since PICO [9] requires
human–object contact as input, we run the method using
contact estimation results from LEMON [82]. For a fair
comparison, we use the same 3D human and object initial-
izations for all methods. Specifically, the initial 3D human
pose is obtained from Multi-HMR [3], and the initial 3D
object pose is estimated by aligning the reconstructed 3D
object with the depth map predicted by ZoeDepth [4]. All

Input image w/o Lcontact

teddy_bear-

HICO_train2015_00005436

TeHOR (Ours)w/o Lappr Lappr → LCLIP

Figure 7. Effectiveness of each loss function in our framework.

Lappr Lcontact CDhuman↓ CDobject↓ Contact↑ Collision↓

✗ ✓ 5.191 22.094 0.330 0.049

✓ ✗ 5.311 19.849 0.374 0.054

LCLIP ✓ 5.018 18.504 0.366 0.047

✓ (Ours) ✓ 4.941 16.701 0.412 0.047

Table 2. Ablation studies for loss configurations.

CDhuman↓ CDobject↓ Contact↑ Collision↓

3D Gaussians → Mesh 5.153 25.162 0.308 0.054

w/o 2D background 5.002 18.196 0.389 0.049

TeHOR (Ours) 4.941 16.701 0.412 0.047

Table 3. Ablation studies for appearance rendering.

object shapes are reconstructed using InstantMesh [80]. As
TeHOR is a Gaussian-based framework, we convert the ini-
tial object mesh into 3D Gaussians via 3DGS [31]. The
† symbol denotes the evaluation that directly compares the
reconstructed 3D Gaussians against the GT mesh surfaces,
without Gaussian-to-mesh conversion.

Fig. 8 and Tab. 4 show that our TeHOR largely out-
performs all state-of-the-art methods both qualitatively and
quantitatively. As previous methods rely heavily on lo-
cal geometric cues, such as human–object contact infor-
mation, they often fail to handle interactions that require
global context, including object orientation. Although HOI-
Gaussian [74] uses depth map from the input image as ad-
ditional information for the reconstruction, it is unable to
capture the semantic context of the interaction and is vul-
nerable to severe human-object occlusion. Unlike the previ-
ous methods, our TeHOR leverages rich text descriptions of
human–object interactions as a key prior, providing holistic
and semantic context that contact information alone cannot
capture. Additionally, Tab. 5 demonstrates our superiority
in non-contact scenarios, where we evaluate the methods on
a subset of Open3DHOI that excludes samples with physi-
cal contact between the ground-truth 3D human and object.
Such cases are particularly challenging because contact-
based cues vanish entirely, forcing the reconstruction sys-
tem to reason about the interaction from global contex-
tual signals such as object orientation, gaze direction, and
body posture. While previous methods fail to reason about
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Figure 8. Qualitative comparison with state-of-the-art methods. We highlight their representative failure cases with red circles.

Open3DHOI BEHAVE

Methods CDhuman↓ CDobject↓ Contact↑ Collision↓ CDhuman↓ CDobject↓ Contact↑ Collision↓

PHOSA [85] 5.342 49.180 0.243 0.044 5.758 46.003 0.257 0.010

LEMON [82] + PICO [9] 5.948 25.889 0.335 0.078 6.159 22.585 0.082 0.045

InteractVLM [13] 5.252 24.238 0.392 0.054 5.770 19.197 0.379 0.021

HOI-Gaussian [74] 5.111 19.363 0.348 0.070 5.748 21.774 0.371 0.019

TeHOR (Ours) 4.941 16.701 0.412 0.047 5.615 17.339 0.412 0.016

TeHOR† (Ours) 4.403 16.697 – 0.045 5.241 17.341 – 0.012

Table 4. Quantitative comparison with state-of-the-art methods on Open3DHOI [74] and BEHAVE [5]. Bold and underlined val-
ues indicate the best and second-best scores, respectively. † denotes the evaluation results directly computed based on the centers of
reconstructed 3D Gaussians instead of 3D mesh vertices.

Methods CDhuman↓ CDobject↓ Collision↓

PHOSA [85] 5.401 65.537 0.028

LEMON [82] + PICO [9] 5.635 33.073 0.029

InteractVLM [13] 5.390 46.819 0.011

HOI-Gaussian [74] 5.244 25.374 0.037

TeHOR (Ours) 4.958 17.546 0.005

Table 5. ‘ Quantitative comparison with state-of-the-art meth-
ods for non-contact scenarios on Open3DHOI [74].

non-contact interaction, our framework benefits from text
descriptions, achieving superior performance in the non-
contact scenarios. Overall, our framework, which effec-
tively optimizes the 3D human and object using these com-
prehensive text descriptions, provides more accurate and ro-
bust reconstructions than previous methods.

5. Conclusion
We propose TeHOR, a text-guided framework for joint re-
construction of the 3D human and object from a single im-
age. Our framework leverages text descriptions to enforce
semantic alignment, enabling reasoning over a wide spec-
trum of interactions, including non-contact cases. It fur-
ther incorporates appearance cues from the 3D human and
object to capture holistic contextual information, ensuring
visual plausibility of the reconstruction. Extensive exper-
iments demonstrate that our proposed framework produces
accurate and semantically plausible reconstructions, achiev-
ing state-of-the-art performance.



TeHOR: Text-Guided 3D Human and Object Reconstruction with Textures

Supplementary Material

In this supplementary material, we present additional
technical details and more experimental results that could
not be included in the main manuscript due to the lack of
pages. The contents are summarized below:

• S1. Visualization in video format
• S2. Evaluation on semantic alignment
• S3. Impact of contact estimation accuracy
• S4. Impact of Gaussian attributes optimization
• S5. Impact of Gaussians-to-mesh conversion
• S6. Details of text captioning
• S7. Implementation details
• S8. More qualitative results
• S9. Limitations and future work

S1. Visualization in video format
The supplementary video "TeHOR Suppl.mp4" consists
of three parts. The first part visualizes the optimization pro-
cess of our framework, demonstrating how text-derived se-
mantic cues guide the reconstruction. Representative ex-
amples include 1) adjusting the arms to hug a teddy bear,
2) following the human’s gaze toward the water bottle, and
3) positioning a leg on the bench. In particular, the gaze-
following case highlights that our framework reasons about
global interaction context beyond explicit contact. The sec-
ond part compares our proposed TeHOR with state-of-the-
art reconstruction methods: InteractVLM [13] and HOI-
Gaussian [74]. The last part shows 360-degree renderings
of the final reconstructions.

S2. Evaluation on semantic alignment
In this section, we introduce additional evaluation to com-
pare TeHOR with state-of-the-art reconstruction methods
on semantic alignment between 3D reconstructions and
text descriptions. Since direct comparison between 3D re-
constructions and text is not feasible, we instead evaluate
appearance-text alignment metrics on 2D renderings of the
reconstructions, following the process shown in Fig. S1. To
ensure a fair comparison, we unify the underlying 3D rep-
resentation across all methods, since existing methods pre-
dominantly use mesh-based representations, whereas our
framework is Gaussian-based. Specifically, we use the
same initial 3D human and object Gaussians, including both
shape and texture attributes, for all methods. We then ex-
tract each method’s human (θ and β) and object (R, t, and s)
pose parameters and apply them to transform the 3D Gaus-
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Figure S1. Process of evaluating text alignment for state-of-
the-art reconstruction methods.

Methods CLIPScore↑ VQAScore↑

PHOSA [85] 0.689 0.631

LEMON [82] + PICO [9] 0.696 0.642

InteractVLM [13] 0.694 0.647

HOI-Gaussian [74] 0.698 0.648

TeHOR (Ours) 0.706 0.652

Table S1. Quantitative evaluation of appearance-text align-
ment on Open3DHOI [74].

sians. This setup ensures that the only variable in the exper-
iments is the set of 3D pose parameters provided by each
method. For evaluation, we render the transformed Gaus-
sians on the 2D background from pre-defined viewpoints
0◦, 90◦, 180◦, and 270◦. Each rendered image is then
paired with its corresponding text description to compute
two image-text alignment metrics: 1) CLIPScore [21] and
2) VQAScore [40]. CLIPScore computes the cosine sim-
ilarity between the embeddings of the rendered image and
the text description. VQAScore utilizes a powerful visual-
question-answering (VQA) model to compute the align-
ment score by converting the text description into a simple
query and measuring the generative likelihood of a desired
response. Here, we use InstructBLIP-FlanT5-XL [10] as
the underlying VQA model to compute VQAScore. Tab. S1
shows that our framework outperforms other state-of-the-
art methods in text alignment by effectively capturing the
holistic and semantic context of human-object interaction.



Contact estimation 3D reconstruction

Contact estimation methods Contactp↑ Contactr↑ Contactf1↑ CDhuman↓ CDobject↓ Contact↑ Collision↓

w/o contact – – – 5.311 19.849 0.374 0.054

Pcontact 0.282 0.342 0.309 4.941 16.701 0.412 0.047

DECO [70] 0.200 0.264 0.228 5.115 17.229 0.353 0.051

LEMON [82] 0.426 0.225 0.295 5.084 17.060 0.389 0.050

InteractVLM [13] 0.422 0.458 0.439 4.988 16.009 0.408 0.052

Table S2. Impact of contact estimation accuracy on TeHOR’s reconstruction performance.

Input image Before optim. After optim.

Figure S2. Enhancement of Gaussian via optimization process.

S3. Impact of contact estimation accuracy
Tab. S2 illustrates the impact of contact estimation accu-
racy on the 3D reconstruction performance of our frame-
work. We compare our framework under different contact
estimation settings, including specialized contact prediction
models such as LEMON [82] and InteractVLM [13]. While
these models improve the precision of contact localization
on human and object surfaces, their contribution to final
3D reconstruction quality remains marginal. Moreover, as
shown in Tab. 4, even with less accurate contact estima-
tion, our framework still achieves superior 3D reconstruc-
tion performance compared to other reconstruction methods
that rely on more accurate contact prediction. The contact
estimation methods primarily focus on accurately predict-
ing the boundaries of the contact region at a fine-grained
level. However, regardless of how precise these contact
boundaries are, the contact information alone cannot cap-
ture the holistic and semantic context of human-object inter-
action. This observation suggests that capturing the holistic
interaction context is far more important for the joint recon-
struction of 3D human and object than precisely delineat-
ing fine-grained contact boundaries. Accordingly, the core
strength of our framework is determined by holistic contact
reasoning supported by text-guided optimization rather than
by accurate contact prediction. This validates our use of the
contact text prompt Pcontact as a lightweight yet effective al-
ternative to external contact prediction models.

S4. Impact of Gaussian attributes optimization
Fig. S2 demonstrates the importance of optimizing the 3D
human and object Gaussian attributes (ϕh and ϕo) within our
framework. Since the initial Gaussian attributes can occa-
sionally be incomplete due to occlusions in the input image,

CDhuman↓ CDobject↓ Contact↑ Collision↓

Before conversion 5.020 16.987 0.394 0.052

After conversion (Ours) 4.941 16.701 0.412 0.047

Table S3. Impact of Gaussians-to-mesh conversion

we further refine them through the appearance loss Lappr.
This optimization process enhances the visual plausibility
and overall coherence of the reconstructed human–object
interactions. As there is no existing 3D HOI dataset that
provides both geometry and texture annotations, quantita-
tive evaluation of this optimization remains challenging;
thus, we primarily present qualitative results.

S5. Impact of Gaussians-to-mesh conversion
Tab. S3 shows that our Gaussians-to-mesh conversion pro-
cess, detailed in Sec. 3.4, is a crucial step for accurate
mesh reconstruction. Direct conversion of 3D Gaussians to
mesh surfaces often produces inconsistencies near contact
regions. Accordingly, we use the conversion procedure that
enforces geometric consistency between Gaussian-defined
contact regions and the corresponding mesh vertices. As
a result, it improves overall geometric accuracy and yields
substantial gains in the contact evaluation score (Contact).

S6. Details of text captioning
Fig. S3 and Fig. S4 illustrate the two captioning instruc-
tions used to generate the holistic text prompt Pholistic and
contact text prompt Pcontact, with the GPT-4 [1] vision-
language model (VLM). First, we generate the holistic
prompt Pholistic, which describes the interaction between the
person closest to the image center and the object most di-
rectly involved with that person. Then, we generate the con-
tact prompt Pcontact by providing both the input image and
the holistic description Pholistic as inference cues, enabling
it to infer which human body parts are in direct physical
contact with the object. This two-stage captioning strategy
allows us to separately infer the global interaction semantics
and the localized contact information.

Fig. S5 highlights the strong capability of the text cap-
tioning process. As shown in the examples, it success-
fully captures key contextual cues essential for reasoning



### TASK ###
Your goal is to provide a detailed description of the

given image, which depicts the interaction between a
person and an object.

- Focus only on the person whose body center is closest
to the image center.

- Identify the object most directly interacted with and
state the action.

- Output must be one sentence, no explanations, labels,
or reasoning.

- Additionally, explicitly output the single object that
is most directly interacted with.

### OUTPUT FORMAT ###
Output: {{interacting object}}, {{description}}

### OUTPUT EXAMPLE ###
Example 1 - Output: soccer ball, A woman is playing

soccer on a grassy field, dribbling the ball.
Example 2 - Output: small box, A man is seated on a

small box with legs crossed.
Example 3 - Output: chair, A woman is moving a chair

with one hand.

Figure S3. Captioning instruction for the VLM [1] to acquire
holistic text prompt Pholistic.

about human–object interactions, including the human’s ac-
tion (e.g., sitting, riding, and performing) and the surround-
ing environment (e.g., pathway, mid-air, and grassy field).
Even when the same object appears in different interaction
scenarios, the VLM provides accurate and semantically ap-
propriate descriptions. This demonstrates the richness of
holistic contextual information, in contrast to contact cues
that convey only local geometric proximity. Such compre-
hensive interaction cues play a crucial role in guiding our
reconstruction framework toward more accurate and glob-
ally coherent 3D human and object reconstructions.

S7. Implementation details
We explain the implementation details of two stages: the
reconstruction stage (Sec. 3.2) and HOI optimization stage
(Sec. 3.3), below. PyTorch [54] is used for implementation.

S7.1. Reconstruction stage
Human reconstruction. When using SmartEraser [28], the
object regions to be removed are inpainted using classifier-
free guidance with a guidance scale of 1.5 in its generative
diffusion network. To segment human region from the in-
painted image, we use Grounded-SAM [35, 44] with a text
prompt corresponding to the object category name obtained
from the text captioning (Sec. S6). From the segmented
human image, LHM operates on a canonical set of 40,000
Gaussian anchors uniformly sampled over the SMPL-X sur-
face. For each anchor, LHM predicts the Gaussian attributes
ϕh, including canonical offsets, opacity, scale, and appear-
ance features, through a single feed-forward inference.
Object reconstruction. When using SmartEraser [28],
we adopt the same settings as in the human reconstruc-

### TASK ###
Your goal is to list the body parts of the person in the

given image that are in direct physical contact
with the object.

- Choose ONLY from this pre-defined list (multi-select
allowed): head, hips, ...

- The interacting object and reference description are
provided as follows: "{object}", "{description}".

- Focus only on the person whose body center is closest
to the image center.

- Identify the object most directly interacted with and
state the action.

- LEFT/RIGHT must be relative to the person (egocentric)
, not the viewer/camera.

- If no clear physical contact is visible, output none.

### OUTPUT FORMAT ###
Output: {{comma-separated list}}

### OUTPUT EXAMPLE ###
Example 1 - Output: left hand, right hand
Example 2 - Output: right foot
Example 3 - Output: none

Figure S4. Captioning instruction for the VLM [1] to acquire
contact text prompt Pcontact.

tion stage. To segment object region from the inpainted
image, we use Grounded-SAM [35, 44] with the text
prompt “human”. From the segmented object image, In-
stantMesh [80] first synthesizes six multi-view images us-
ing Zero123++ [65] with 75 diffusion steps, and then re-
constructs a textured mesh through its triplane-based recon-
struction network. The resulting textured mesh is subse-
quently converted into 3D object Gaussians ϕo, where the
Gaussian centroids are placed at the mesh vertex positions
and their initial appearance features are assigned from the
mesh vertex colors. The Gaussian attributes are further
optimized to match the 2D images rendered from the re-
constructed textured mesh at 360 uniformly sampled view-
points, following the optimization procedure of 3DGS [31].

S7.2. HOI optimization stage

We use the Adam [34] optimizer with an exponentially
decaying learning rate. The initial learning rate is set to
1 × 10−2 for the object pose parameters (R, t, and s),
1 × 10−4 for the human pose parameters (θ and β), and
1 × 10−4 for the human and object Gaussian attributes (ϕh
and ϕo). We optimize the network for N = 200 steps on
a single NVIDIA RTX 8000 GPU. Under this setting, the
average optimization time per sample is 134 seconds.
Appearance rendering. During optimization, we render
the 3D human Gaussians Φh and object Gaussians Φo using
a spherical coordinate system (r, υ, ψ), where r denotes the
distance to the spherical origin, υ the elevation angle, and
ψ the azimuth angle. We uniformly sample viewpoints with
r ∈ [1.0, 2.5], υ ∈ [−30◦, 30◦], and ψ ∈ [−180◦, 180◦].
Since human-object interaction primarily involves the up-
per body, such as the head and hands, we additionally



“A man is sitting on a wooden bench with one arm 

resting on the backrest”

“Contact part: hips, left thigh, right thigh, left hand,     

right hand”

“A man is sitting on a stone bench with his hands 

clasped”

“Contact part: hips”

“A man is holding a yellow bicycle with both hands”

“Contact part: left hand, right hand”

“A person is riding a green bicycle on a stone path”

“Contact part: left hand, right hand, hips, left foot, 

right foot”

“A person is performing a jump on a bicycle in 

mid-air.”

“Contact part: left hand, right hand”

“A shirtless man is reaching to catch a flying disc 

on a grassy field”

“Contact part: none”

“A girl is running on the grass alongside a black dog”

“Contact part: none”

“A man is performing a skateboard jump in mid-air 

at a skate park”

“Contact part: none”

“A boy is riding a skateboard along a pathway by 

the ocean.”

“Contact part: none”

“A young person is standing while holding a skateboard.”

“Contact part: left hand, right hand”

Figure S5. Text captioning results on Open3DHOI [74]. Our text captioning produces accurate and rich text descriptions for a wide
range of interaction scenarios.

Input image Reconstruction results

Figure S6. Failure case of reconstructing local details.

use zoomed-in camera views focused on this region. For
these upper-body views, we set the spherical origin to the
3D position of the SMPL-X spine keypoint and sample
r ∈ [0.7, 1.5], υ ∈ [−30◦, 30◦], and ψ ∈ [−180◦, 180◦].
Appearance loss. We compute the appearance loss Lappr of
Eq. (2) using StableDiffusion-v2.1 [62] and apply classifier-
free guidance [22] with a guidance scale of 15.0 for noise
estimation. The noise levels are defined at randomly sam-
pled timesteps within [0.02, 0.98]. To ensure stable opti-
mization, we clip the loss gradients to a maximum norm of
1.0.

S8. More qualitative results
We provide additional qualitative comparison results of our
TeHOR in Figs. S7 to S10. These examples further demon-
strate the effectiveness of our method in reconstructing real-
istic and semantically coherent human–object interactions.
Please note that the left-side results of TeHOR are mesh-

based renderings, while the right-side results are Gaussian-
based renderings. Due to the inherent characteristics of 3D
Gaussian representations, Gaussian renderings can appear
slightly larger and exhibit blurred boundaries.

S9. Limitations and future work
Reconstruction of local details. While our framework
captures holistic human–object interactions effectively, it
may overlook fine-grained local details such as small acces-
sories or subtle surface deformations, as shown in Fig. S6.
This limitation occurs because the appearance loss of our
framework primarily offers global guidance and lacks fine-
grained supervision that specifically addresses local re-
gions. A promising future direction is to design localized,
text-driven supervision that specializes in local regions to
further enhance fine-detail reconstruction.
Video as input. Our framework aims to jointly reconstruct
3D human and object from a single image. When extend-
ing the method to video input, additional considerations be-
come essential, such as maintaining temporal consistency
across frames and ensuring consistent geometry and tex-
ture over time. With the recent emergence of text-to-video
generative models [6, 23], future work could leverage these
advances by using text descriptions as a key guidance, en-
abling more stable and temporally coherent 3D HOI recon-
struction.
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Figure S7. More qualitative comparison of 3D human and object reconstruction with PHOSA [85], InteractVLM [13], and HOI-
Gaussian [74], on Open3DHOI [74]. We highlight their representative failure cases with red circles.
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Figure S8. More qualitative comparison of 3D human and object reconstruction with PHOSA [85], InteractVLM [13], and HOI-
Gaussian [74], on Open3DHOI [74]. We highlight their representative failure cases with red circles.
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Figure S9. More qualitative comparison of 3D human and object reconstruction with PHOSA [85], InteractVLM [13], and HOI-
Gaussian [74], on Open3DHOI [74]. We highlight their representative failure cases with red circles.
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Figure S10. More qualitative comparison of 3D human and object reconstruction with PHOSA [85], InteractVLM [13], and HOI-
Gaussian [74], on Open3DHOI [74]. We highlight their representative failure cases with red circles.
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